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Secondary electron emission (SEE) properties of polycrystalline diamond films grown

by chemical vapor deposition (CVD) were measured. The total secondary yield (_r) from

as-grown samples was observed to be as high as 20 at room temperature and 48 while heating

at 700 K in vacuum. Electron-beam-activated, alkali-terminated diamond films have shown

stable values of o'as high as 60 when coated with Csl and similarly high values when coated

with other alkali halides. Diamond coated with BaF, had a stable o of 6, but no enhancement

of the SEE properties was observed with coatings of Ti or Au. Hydrogen was identified to

give rise to this effect in as-grown films. However, electron beam exposure led to a reduction

in o-to values as low as 2. Exposure to a molecular hydrogen environment restored crto its

original value after degradation, and enabled stable secondary emission during electron

beam exposure. Atomic hydrogen and hydrogen plasma treatments were performed on

diamond/Mo samples in an attempt to increase the near-surface hydrogen concentration

which might lead to increased stability in the secondary emission. Raman scattering

analysis, scanning electron microscopy, and Auger electron spectroscopy (AES) confirmed

that hydrogen plasma and atomic hydrogen treatments improved the quality of the CVD

diamond significantly. Elastic recoil detection (ERD) showed that heating as-grown

diamond targets to 700 K, which was correlated with an increase in o', removed contaminants

from the surface but did not drive hydrogen from the diamond bulk. ERD showed that the

hydrogen plasma treatment produced an increase in the hydrogen concentration in the near-

surface region which did not decrease while heating in vacuum at 700 K, but no improvement

in the SEE properties was observed.

_Present address: General Vacuum, Inc., P.O. Box 605204, Cleveland, Ohio 44105
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1. Introduction and Background

Interest in technological applications of diamond has shifted recently from wear-

resistant coatings to electronics _L2_due to the negative electron affinity (NEA) of natural

diamond, _3_coupled with the relative ease of fabrication of conductive diamond fihns grown

by chemical vapor deposition (CVD)/4_ It is also well established that the diamond surface

is terminated with hydrogen, '_._ which may give rise to NEA in natural diamond and some

well-oriented CVD diamond films. _7,x_This present work is a continuation of measurements
of the secondary electron emission (SEE) from diamond on Mo, Si, Ti, AIN, and Pd which

began several years ago _'_-t4_and indicates that diamond may be suitable in many secondary

emitter applications due to its high total secondary yield (0").

Devices which utilize secondary emitters include cross-field devices such as magne-

trons, cross-field amplifiers (CFA), traveling-wave tubes (TWT), electron multipliers and
photomultiplier tubes (PMT). Such devices are essential in radar, intelligence gathering,

space communications, and night vision glasses. Materials used presently in secondary

emitter applications may have values of o'as high as 4, but generally fall between 2 and 3._t_,_6_

Many devices which rely on SEE operate in an evacuated environment (- 10-9 Torr), or often

in the presence of a background with a partial pressure of-10 6Torr._6_ In many instances

the background is oxygen, but hydrogen would be desirable if it would enhance or not lead

to degradation of the secondary electron emitting surfaces.

Hydrogen was identified to be responsible for the high values of o"from as-grown CVD

diamond films/_ t_, Total secondary yields as high as 27 from diamond/Mo and as high as
48 from diamond/Pd were measured in vacuum during heating to 700 K. _"' The total

secondary yield was observed to degrade as a function of fluence under continuous exposure

to an electron beam due to electron-induced desorption of hydrogen. _,"'_ Subsequent

exposure to a molecular hydrogen partial pressure of 1.0 × 10 .6 Torr for approximately 20

min restored oto its original value. The total secondary yield from diamond/Mo was stable

at 12 during continuous electron beam exposure, in the presence of a molecular hydrogen

partial pressure of 1.0 × 10 -6 Torr/'_ The total secondary yield from diamond/Pd was

observed to be stable at 25 during exposure to a continuous beam of electrons at I keV while

heating at 700 K which produced a hydrogen background pressure of-l.0 × 10 -6 Torr/_'

High stable secondary emission (o-= 25-45 @ 1500 eV) in ultrahigh vacuum (UHV) was
achievable by coating CVD diamond with an alkali-halide thin film and activating the

surface by electron beam exposure. __2._3,The activation produced a halogen-free surface (as

observed with AES) which was terminated by - 1 monolayer of the alkali metal, and was

reproducible using different alkali-halide overcoatings. These electron-beam-activated,

alkali-terminated (EBAAT) diamond surfaces showed no degradation of o'after long-term

electron beam exposure when Csl was used as the overcoating, and promising results with

little degradation when NaCI or KCI was used. The EBAAT surface was stable to

temperatures exceeding 120°C and when exposed to air for several months. __3_

Emission from EBAAT diamond films has been observed to decrease in the presence of

Ar at pressures exceeding 1.0 × 10 -7 Tort when under exposure to a primary electron beam

with current density less than 1 mA/cm 2. The decrease in t7 is not permanent, and is

probably due to impurity atoms contaminating the EBAAT surface. The effect can be
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reversedbyeitheranincreaseinprimarycurrentdensityoradecreaseinpressure.However,
forthisreasontheEBAATdiamondis notnecessarilyasdesirableasthehydrogen-
terminateddiamondforspecificapplications.Also,NEAobservationsfromdiamond
coatedwiththinfilms(submonotayerandmonolayercoverages)ofTiandCo_7._7_suggest
thattheseorothermaterialsmayproducehighstable<3-andallowoperationathigher
temperatures.Theseconsiderationswerethemotivationforthiswork.

2. Experimental Procedure

SEE measurements were conducted in a UHV chamber with a base pressure of 1.0 × 10 "'

Ton'. The experimental setup has been described previously. '9_ The samples tested were p-

type diamond films on Mo and Si substrates, ranging from I/Jm to 20_m in thickness, grown

by hot filament (HF) and microwave plasma (MP) CVD. Total secondary yield vs. primary

beam energy (Ev,,,,,,,_) was measured for all samples, where E v........_ ranged from 100 eV to 3
keV in 50 eV increments. To investigate the effects of beam exposure on or,each sample was

exposed to the electron beam for up to 72 h at current densities ranging from 50 MA/cm'- to

10.0 mA/cm 2. The beam diameter ranged from 0.12 to 0.25 ram. The current density was

held constant during each experiment and the data were normalized by comparing the

fluence dependence of each sample. In all cases the data were collected every 5 s while the

primary beam energy was held constant in the range 1.0 to 1.5 keV.

Each as-deposited sample was tested prior to any hydrogen treatment, after which each

sample was subjected to a molecular hydrogen treatment, an atomic hydrogen treatment, a

hydrogen plasma treatment, or a combination of these. The SEE measurements were

repeated on the treated samples.

Scanning electron microscopy (SEM), Raman scattering analysis, and Auger electron

spectroscopy (AES) were used to determine the effects of the hydrogen treatments on the

diamond samples. Rutherford backscattering spectroscopy (RBS) was used to investigate

the purity of the diamond bulk, and elastic recoil detection (ERD) was used to characterize

bulk and near-surface hydrogen concentrations in the diamond samples, as-grown and after
hydrogen treatments. ERD was also used to detect changes in the hydrogen concentrations

during heating at 700 K, which might be responsible for the increase in cr observed

previouslyJ_ t_>AES was used to investigate changes in the shape of the carbon peak from

CVD diamond/Si due to ionic bombardment, indicating graphitization of the diamond
surface.

BaF, coatings, 30 nm thick, were resistively evaporated onto diamond targets in a

diffusion-pumped high-vacuum system with a base pressure of 2 x 1()-_ Torr. Thin coatings

of Ti and Au, ranging from < 1 monolayer to 30 nm in thickness, were vacuum-deposited

from a resistively heated source onto diamond targets in a turbopumped preparation chamber
attached to the main UHV test chamber and separated with a gate valve. SEE properties of

these samples were measured as described above. Thin CsI coatings were deposited onto

representative diamond samples from the depositions used for Ti and Au coatings, and the

targets were used as control samples to ensure that diamond films from different depositions

had similar SEE properties.



342

3. Experimental Results

SEE measurements from as-grown samples have been discussed previously _" _' and

some results will be included here for comparison. Figures 1 and 2 show crvs. Ep, i,,,, , and
crvs. fluence data from representative CVD diamond targets, respectively. No differences

in the SEE results have been observed to arise from the different deposition techniques

(HFCVD and MPCVD). _wax from as-grown samples nominally occurred between 1000

and 1500 eV, and ranged from 10 to 20 as seen in Fig. 1. As-grown CVD diamond/Pd had

O'_faxof- 20 at 1400 eV, and O'MAXof 48 at 3 keV while being heated in vacuum at 700 K. _m_

EBAAT diamond/Mo bad _.ax of 50-60 at 3 keV at room temperature. _3. _8_

Figure 2 shows that crdecreased from untreated samples under electron beam exposure

in vacuum, independent of the type of hydrogen surface treatment. Stable SEE (or= 12) was

observed from as-grown diamond/Mo in a hydrogen atmosphere of 1.0 x 10 6 Torr while

exposed to 1 keV electron beam (not shown). _9_It was noted that at the values of hydrogen

partial pressure and current density necessary for stable or,the hydrogen molecules impinged
on the diamond surface at the same rate as energetic electronsJ _ The increase in cr from
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Fig. 1. Total secondary yield (o3 vs. primary beam energy from CVD diamond: (V)as-grown on Mo;

(×)as-grown on Pd; ( ) heated in vacuum at 700 K (Mo); ( _I,)heated in vacuum at 700 K (Pd);( )

after atomic hydrogen treatment (Mo); ( £ ) after hydrogen plasma treatment (Mo); (A) EBAAT
surface using Csl (Mo).
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heated in vacuum at 700 K (Mo); ( • ) heated in vacuum at 700 K (Pd): ( ) after atomic hydrogen

treatmenl(Mo);( £ )afterhydrogenplasmatreatment(Mo).

diamond/Mo while heating is seen from all diamond targets and is probably due to initial

desorption of surface contaminants. This effect was not observed in the other curves because

data collections began after initial beam exposure.
Stable 6 > 25 from diamond/Pd was also observed when the sample was heated in

vacuum at 700 K (cf. Fig. 2) while the target was exposed to 1keV electron beam. _m, At this
temperature the Pd substrate provided a hydrogen background pressure of 1.0 × I0 _'Tort,

which was sufficient to replenish the surface hydrogen desorbed by the electron beam. After

sufficient heating, hydrogen stored in the Pd substrate was depleted and o" decreased with

the same behavior seen in the as-grown films (cf. Fig. 3). Figure 3 shows that stable SEE

(o-= 20-45 @ 1500 eV) was readily observed from alkali-halide-coated diamond films in

UHV, independent of the primary beam current. _'2'3_

Barium is well known for lowering the work function of W and Mo, thereby enhancing

emission in themfionic cathodes? _'; 2t, To investigate possible enhancement of secondary

emission from Ba on CVD diamond, thin BaF 2 films were deposited on diamond. It was

assumed that a monolayer coverage could be produced by electron beam exposure similar

to the EBAAT process, which might lower the work function of the diamond surface. As
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Fig. 3. Total secondary yield (o) vs. fluence at 1.5 keV: (solid line) EBAAT diamond/Si using CsI;
(short dashed line) diamond/Pd during heating in vacuum at 700 K; (long dashed line) diamond/Si
coated with 30 nm BaF 2.

is seen in Fig. 3, _yvs. fluence from BaF2-coated diamond showed a behavior similar to that

of EBAAT samples. However, the maximum value of cr never exceeded 6 at 1.5 keV in

samples of diamond/Si coated with 30 nm BaF> Csl-coated diamond films from the same

diamond-coated Si wafers used with BaF2 had values of or> 30 under the same operating

parameters.

The fluence dependence of crfrom diamond in vacuum during exposure to an electron

beam, shown in Fig. 2, has been observed in all as-grown CVD diamond targets tested,

independent of the current density or the substrate material. It was observed previously that

energetic primary electrons induced hydrogen desorption from the diamond surface, which
resulted in lower cr (cf. Fig. 2).

The Auger carbon peaks from an as-grown diamond surface, before and after Ar ion

sputtering at 2kV, are shown in Fig. 4. Before sputtering the signature Auger diamond peak

was observed, a2_ After sputtering for 6 rain the diamond structure was destroyed, as

indicated by the shape of the Auger carbon peak. Ion bombardment using oxygen at 2kV,

and hydrogen to as low as 200 V, produced the same change in the carbon peak from CVD
diamond targets. This graphitization of the diamond surface due to ion bombardment is

responsible for the reduction in crto that of ordinary carbon observed when diamond targets
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Fig. 4. Auger carbon peak from as-grown diamond/Si (top curve) and after Ar ion sputtering at 2kV
for 6 rain (bottom curve), indicating a graphitic structure.

were sputtered with Ar, O 2and H_ with energies _>200 VY °_

The increase in _from 12 to 27, shown in Fig. 1, from diamond/Mo heated in vacuum
at 700 K, was originally thought to be due to hydrogen diffusing from the bulk. _,_ However,

this is not observed to occur below 1200 K. _2_ ERD analysis of the as-grown diamond/Mo

samples at room temperature showed an average hydrogen concentration of 2.0 atomic

percent in the near-surface region as compared to 1.0 atomic percent present in the bulk, as

illustrated by the solid curve in Fig. 5. The dashed curve shows the same sample 60 rain after

heating at 700 K, where the surface peak disappeared. Figure 5 shows that the hydrogen

concentration in the bulk was unaffected at these temperatures. The ( f_) curve in Fig. 5 shows

the same sample after it was removed from vacuum, then reintroduced 96 h later. The surface

peak reappeared, suggesting that this peak is due to contaminants adsorbed onto the surface

during exposure to air. The increase in o-due to heating observed previously _,__ was a result
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Fig. 5. ERD spectra from CVD diamond target showing hydrogen concentration: (solid line) as-

grown, before heating; (dashed line) after heating at 700 K for 60 min; ( £. ) room temperature, after

reexposure to air for 96 h.

of the removal of surface contaminants, not an increased surface concentration of hydrogen.

Although the width of the hydrogen peak in the near-surface region in Fig. 5 corresponds

to a thickness of 200 nm, we believe the contamination layer is significantly thinner, - 10-

20 nm. The apparent thickness was probably a result of the surface roughness of the CVD
diamond film. Using a stylus profilometer with a radius of curvature of 12.5/Jm, we were

able to assign a lower limit of 150 nm to the surface roughness of the diamond used in this
work.

Figure 6 shows o"vs. Ep,.,m_,_from a representative diamond/Mo sample, as-grown and
after hydrogen plasma treatment. Both the hydrogen plasma and atomic hydrogen treat-

ments led to a significant reduction in o'. In the case of atomic hydrogen treatments (not

shown), O'MAx from the as-grown sample was reduced from 12 to 4. Subsequent exposure

to molecular hydrogen, or heating in hydrogen, oxygen or vacuum environments to as high

as 900 K was unsuccessful in reversing the reduction in o'.

It was clear from SEM images, and the associated Raman and Auger spectra (not shown),
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Fig. 6. Total secondary yield (o3 vs. primary beam energy from CVD diamond/Mo: ( 0 ) as-received:

(A) after hydrogen plasma treatment.

that hydrogen plasma and atomic hydrogen treatments improved the quality of diamond.

The ERD spectra in Fig. 7 show that the hydrogen plasma treatment led to a significant
enhancement in the near-surface hydrogen peak as compared to the as-grown samples.

unlike the atomic hydrogen treatment which did not result in any increase in the near-surface

hydrogen concentration. However, as described above (cf. Fig. 6), the reduction in cr
resulting from the hydrogen treatments was irreversible by heating or molecular hydrogen

exposure. These data suggest that these treatments alter the surface and increase the work

function, regardless of the increase in the near surface hydrogen concentration due to the

hydrogen plasma.

Most metals exhibit o'uax at primary beam energies between 0.6 and I keV. _24_Measure-

ments from as-grown CVD diamond indicate that o'._,_xoccurs between I and 1.5 keV. The

total secondary yield vs. E;,,,,,,,,, curves from EBAAT diamond using Csl and the diamond/

Pd during heating shown in Fig. 1 are atypical since O'MAXhas not been reached at 3 keV.

These data suggest that emission is being generated below the surface in these materials,

since the deeper-penetrating, higher-energy electrons appear to lead to an increasing number
of secondaries. No measurements were made above 3 keV to determine crMa_,from these

samples. It is likely that this behavior was not observed in the as-grown films due to the
desorption of hydrogen by the electrons striking the surface before penetrating into the bulk.

This would decrease o',c]°' and hence, increase the work function which would prevent
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Fig. 7. ERDspectrafromCVDdamondshowinghydrogenconcentration:( £ )as-grown;(solidline)

after hydrogen plasma treatment.

electrons generated deeper in the diamond from escaping to vacuum.

The SEE data obtained from the as-grown diamond after hydrogen treatments show that
the surface structure is critical to the secondary emission. Also, cr vs. fluence data from

EBAAT diamond during heating (T > 150°C) or at elevated pressures ( 1.0 × 10-6 Torr Ar,

not shown) show the EBAAT surface to be highly sensitive to impurity concentrations and

temperature. Multiple Ti and Au depositions were made onto two diamond/Mo films to

investigate the possibility of other emission-enhancing surface coatings which may have the
benefit of withstanding higher temperatures.

The depositions were performed in a preparation chamber without disrupting vacuum,

and the vacuum during depositions never exceeded 5 × 10 -7 Tort. CsI was deposited in the

same way on a diamond target as those used with the metal overlayers to ensure that the

diamond had potential for highly stable SEE. The total secondary yield measured from the

Csl-coated control sample was stable and exceeded 30 at 1500 eV. Figures 8 and 9 show

multiple scans of crvs. fluence from diamond/Mo coated with Ti and Au, respectively, with

the overlayer thicknesses starting from < 1 monolayer and increasing in multiple monolayer
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increments. The overlayer materials were chosen based on emission-enhancing effects
reported in the literature. Ti/diamond has been reported as a NEA material, _7_and thin Au

films have been reported to stabilize field emission from CVD diamond films. _2_.2_With

each successive deposition CYMAx was reduced, until the SEE behavior became that of the
overlayer material.

The apparent temporary recovery in the data from diamond coated with 0.4- and 1.0-nm-

thick Au films is probably due to mobile gold atoms under electron beam exposure. As the

surface was exposed and locally heated, Au atoms might gain sufficient energy to "hop" out,
revealing a previously unexposed diamond surface. Thereafter the data follow the normal

behavior for hydrogen-terminated diamond. This behavior was observed at every point
tested on the diamond coated with 0.4- and 1.0-nm-thick Au. It was not observed after the
Au thickness exceeded 1.0 nm.

4. Conclusions

High SEE has been observed from CVD diamond films grown on various substrates. In

as-grown films the effect is due to surface hydrogen which is unstable under exposure to an

electron beam. Alkali-halide coatings on the diamond films lead to highly stable emission
in UHV after the surface is activated by electron beam exposure. No differences in SEE

properties have been observed between samples grown by HFCVD or MPCVD. The SEE

properties appear to have little or no dependence on the substrate material, except in the case
of Pd substrate whcre heating induces a continuous flow of hydrogen from the Pd onto the

diamond surface, which stabilizes o'. Thin BaF2 coatings provided some enhancement in the
stability of abut crMax was considerably lower than those for EBAAT surfaces or even as-
grown films.

ERD showed that heating untreated samples at 700 K cleaned the surface, which led to

an increase in o'. The bulk hydrogen concentration was observed to remain unchanged at this
temperature.

Hydrogen plasma and atomic hydrogen treatments led to a significant, irreversible

reduction of o'from CVD diamond/Mo targets. Raman scattering Analysis, SEM, and AES
showed that the diamond surface was improved significantly by the treatments. ERD

showed that hydrogen plasma treatment led to a significant increase in the near-surface

hydrogen concentration. However, or,which is highly surface-sensitive, decreased after the

hydrogen treatments. This implies that SEE is dependent on surface hydrogen and is not

affected by the near-surface hydrogen concentration. The _ vs. Ep,,,,,,,y data from EBAAT

diamond coated with CsI show higher emission at higher primary energies, indicating that
electrons generated deeper within the bulk drift to the surface and are emitted into the

vacuum. However, the data from as-grown films indicate that the surface properties
ultimately determine the SEE properties from CVD diamond.

Although Ti on diamond has been observed to be a NEA material when Ti is _< 1

monolayer thick, no SEE enhancing effect was observed when thin layers were deposited
on diamond. The same results were observed with thin Au films.
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